Performance and tolerance of the AL Bandeirantes maize cultivar to salt stress

Ricardo Gonçalves Santos, Cynthia Cavalcanti de Albuquerque, Dayane Carla Costa Paiva, Francisco Fábio Mesquita Oliveira, Roberto Carlos Grillo Ragagnin, Aline Kelly de Aquino Lima Cipriano

Resumo


The maize (Zea mays L., Poaceae) is a high productivity plant, but its agricultural yield is compromised in areas with soil salinity problems. This study aimed to evaluate the performance of maize plants (AL Bandeirantes cultivar) submitted to different levels of salinity. The experiment was conducted in greenhouse conditions under completely randomized design, with 4 treatments (0, 50, 100 and 150 mM of NaCl). An additional group of plants was not exposed to NaCl (controls). The plants were evaluated for height, root volume, shoot and root dry weight, shoot/root ratio, relative water content and proline concentration in leaves. The NaCl reduced the dry weight and the root volume in comparison with that observed for the control. The plants height was affected only after 21 days of exposure to salt stress, while no significant difference in relative water content was observed among treatments. The proline accumulation was expressive in the plants treated with 150 mM of NaCl, indicating a mechanism for regulating osmotic. Salt stress did not affect the survival of the AL Bandeirantes cultivar, as was observed by plants development at all concentrations applied.

Texto completo:

PDF

Referências


Ali, A., Basra, S. M. A., Hussain, S., Iqbal, J., Bukhsh, M. A. A. H. A., & Sarwar, M. (2012). Salt stress alleviation in field crops through nutritional supplementation of silicon. Pakistan Journal of Nutrition, 4 (8), 637-655. Recuperado de http://dx.doi.org/10.3923/pjn.2012.735.753.

Azevedo-Neto, A. D., & Tabosa, J. N. (2000). Salt stress in maize seedlings: part I growth analysis. Revista Brasileira de Engenharia Agrícola e Ambiental, 4 (2), 159-164. Recuperado de http://dx.doi.org/10.1590/S1415-43662000000200005.

Borzouei, A., Kafi, M., Akbari-Ghogdi, E., & Mousavi-Shalmani, M. (2012). Long term salinity stress in relation to lipid peroxidation, super oxide dismutase activity and proline content of saltsensitive and salt-tolerant wheat cultivars. Chilean Journal of Agricultural Research, 72(4), 476-482. Recuperado de: .

Carmo-Filho, F., & Oliveira, O. F. (1995). Mossoró: um município do semi-árido nordestino, caracterização climática e aspecto florístico. Mossoró: ESAM. 62p. (Coleção mossoroense, série B).

Carvalho, J. F., Tsimpho, C. J., Silva, Ê. F. F., Medeiros, P. R. F., Santos, M. H. V., & Santos, A. N. (2012). Produção e biometria do milho verde irrigado com água salina sob frações de lixiviação. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(4), 368-374. Recuperado de: .

Conus, L. A., Cardoso, P. C., Venturoso, L. R., & Scalon, S. P. Q. (2009). Germinação de sementes e vigor de plântulas de milho submetidas ao estresse salino induzido por diferentes sais. Revista Brasileira de Sementes, 31(4), 67-74. Recuperado de: .

Cunha, R. C., Oliveira, F. A., Souza, M. W. L., Medeiros, J. F., Lima, L. A., & Oliveira, M. K. T. (2016). Ação de bioestimulante no desenvolvimento inicial do milho doce submetido ao estresse salino. Irriga, 1 (1), 191-204. Recuperado de < http://irriga.fca.unesp.br/index.php/irriga/article/view/1855>

De Costa, W., Zӧrb, C., Hartungc, W., & Schubertb, S. (2007). Salt resistance is determined by osmotic adjustment and abscisic acid in newly developed maize hybrids in the first phase of salt stress. Physiologia Plantarum, 131 (2), 311-321. Recuperado de: https://www.ncbi.nlm.nih.gov/pubmed/18251902.

Dobrá, J., Vanková, R., Havlová, M., Burman, A. J., Libus, J., & Štorchová, H. (2011). Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery. Journal of Plant Physiology, 168 (13), 1588-1597. Recuperado de http://dx.doi.org/10.1016/j.jplph.2011.02.009.

Farooq, M., Hussain, M., Wakeel, A., & Siddique, K. H. M. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35(2), 461-481. Recuperado de: http://dx.doi.org/10.1007%2Fs13593-015-0287-0.

Gomes, K. R., Amorim, A. V., Ferreira, F. J., Filho, F. L. A., Lacerda, C. F., & Gomes-Filho, E. (2011). Respostas de crescimento e fisiologia do milho submetido a estresse salino com diferentes espaçamentos de cultivo. Revista Brasileira de Engenharia Agrícola e Ambiental, 15 (4), 365-370. Recuperado de: .

Gondim, F. A., Gomes-Filho, E., Marques, E. C., & Prisco, J. T. (2011). Efeitos do H2O2 no crescimento e acúmulo de solutos em plantas de milho sob estresse salino. Revista Ciência Agronômica, 42 (2), 373-38. Recuperado de http://www.ccarevista.ufc.br/seer/index.php/ccarevista/article/view/1739.

Graciano, E. S. A., Nogueira, R. J. M. C., Lima, D. R. M., Pacheco, C. M., & Santos, R. C. (2011). Crescimento e capacidade fotossintética da cultivar de amendoim BR 1 sob condições de salinidade. Revista Brasileira de Engenharia Agrícola e Ambiental, 15(8), 794-800. Recuperado de: .

Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012) Role of proline under changing environments: a review. Plant Signaling and Behavior, 7(11), 1456-1466. Recuperado de: .

Hoque, M. M. I, Jun, Z., & Guoying, W. (2015). Evaluation of salinity tolerance in maize (Zea mays L.) genotypes at seedling stage. Journal of Bioscience and Biotechnology. 4(1), 39-49. Recuperado de: .

Huang, Z., Zhao, L., Chen, D., Liang, M., Liu, Z., Shao, H., & Long, X. (2013). Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. Plos One, 8(4), p. e62085. Recuperado de: .

Kazama, D., Kurusu, T., Mitsuda, N., Ohme-Takagi, M., & Tada, Y. (2014). Involvement of elevated proline accumulation in enhanced osmotic stress tolerance in Arabidopsis conferred by chimeric repressor gene silencing technology. Plant Signaling and Behavior, 9(3), p. e28211. Recuperado de: .

Lacerda, C. F., Sousa, G. G., Silva, F. L. B., Guimarães, F. V. A., SILVA, G. L., & Cavalcante, L. F. (2011). Soil salinization and maize and cowpea yield in the crop rotation system using saline waters. Engenharia Agrícola, 31(4), 663-675. Recuperado de: .

Lima, A. O., Lima-Filho, F. P., Dias, N. S., Rego, P. R. A., Blanco, F. F., & Neto, M. F. (2017). Mechanisms controlling surface water quality in the cobras river sub-basin, Northeastern Brazil. Revista Caatinga, 30(1), 181-189. Recuperado de: .

Monreal, J. A., Jiménez, E. T., Remesal, E., Morillo-Velarde, R., García-Mauriño, S., & Echevarría, C. (2007). Proline content of sugar beet storage roots: response to water deficit and nitrogen fertilization at field conditions. Environmental and Experimental Botany, 60(2), 257-267. Recuperado de: .

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell & environment, 25(2), 239-250. Recuperado de:

Niu, G., Xu, W., Rodriguez, D., & Sun, Y. (2012). Growth and physiological responses of maize and sorghum genotypes to salt stress. International Scholarly Research Network: Agronomy, v. 2012. Recuperado de: .

Oliveira, A. K. C., Silva, M. S., Mendonça, C. E. S., Ferreira, G. B., Chaves, V. C., & SILVA, D. J. (2007). Avaliação qualitativa da água de barragens subterrâneas no semi-árido nordestino brasileiro. Revista Brasileira de Agroecologia, 2, 1401-1404. Recuperado de: .

Rady, M. M., & Hemida, K. A. (2016). Sequenced application of ascorbate-proline-glutathione improves salt tolerance in maize seedlings. Ecotoxicology and Environmental Safety, 133, 252-259. Recuperado de: .

Ragagnin, R. C. G, Alburqueque, C. C., Oliveira, F. F. M., Santos, R. G., Gurgel, E. P., Diniz, J. C., Rocha, S. A. S., & Viana, F. A. (2014). Effect of salt stress on the growth of Lippia gracilis Schauer and on the quality of its essential oil. Acta Botanica Brasilica, 28(3), 346-351. Recuperado de: .

Rahini, R., Mohammakhani, A., Roohi, V., & Armand, N. (2012). Effects of salt stress on the yield components, essential oil content and cholorophyll concentration of three fennel populations. International Journal of Agronomy and Plant Production, 3(Special Issue), p.716-720. Recuperado de: .

Richter, J. A., Erban, A, Kopka, J., & Zӧrb, C. (2015). Metabolic contribution to salt stress in two maize hybrids with contrasting resistance. Plant Science, 233, 107-115. Recuperado de: .

Shirmardi, M., Savaghebi, G. R., Khavazi, K., Akbarzadeh, A., Farahbakhsh, M., Rejali, F., & Sadat, A. (2009). Water relationships and agronomic indices of sunflower infection by microbial inoculants under saline condition. Advances in Agriculture & Botanics - International Journal of the Bioflux Society, 1(2), p.37-50. Recuperado de: .

Silva, E. N., Ribeiro, R. V., Ferreira-Silva, S. L., Viégas, R. A., & Silveira, J. A. G. (2011). Salt stress induced damages on the photosynthesis of physic nut young plants. Scientia Agricola, 68(1), 62-68. Recuperado de: .

Szabados, L., & Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. Recuperado de: .

Universidade Estadual Paulista “Júlio de Mesquita Filho” - Departamento de Ciências Exatas. (1994). ESTAT. Versão 2.0.Jaboticabal: FCAV/UNESP.


Apontamentos

  • Não há apontamentos.


Magistra

ISSN 2236-4420 - versão on line