Planejamento sistemático da conservação na Serra da Jiboia, extremo norte do Corredor Central da Mata Atlântica

Guilherme de Oliveira, Elinsmar Vitória Adorno, Alessandra Nasser Caiafa, Rafael Rodrigues Freire, Marcos Gonçalves Lhano, Alan Daniel Cerqueira Moura, Téo Veiga de Oliveira, Sérgio Schwarz da Rocha, Rômulo Rafael dos Santos, Carolina Saldanha Scherer, Maria Luíza Pereira Silva

Resumo


Resumo: A Mata Atlântica possui elevada riqueza de espécies endêmicas e está ameaçada pelos efeitos de atividades antrópicas, restando 12,4% de remanescentes de vegetação natural. Os fragmentos desse bioma possuem papel crucial como refúgio para a conservação da biodiversidade. Um desses fragmentos é a Serra da Jiboia localizada no extremo norte do Corredor Central da Mata Atlântica possuindo características peculiares de uma região de transição entre dois biomas, Mata Atlântica e Caatinga. O objetivo desse trabalho foi estabelecer regiões prioritárias para a conservação na Serra da Jiboia, baseado no princípio da complementaridade, utilizando cinco categorias como alvos de conservação: i) mamíferos; ii) aves; iii) invertebrados terrestres; iv) invertebrados aquáticos; e v) plantas. Uma camada vetorial que resume o uso e a ocupação do solo por agricultura, pecuária e urbanização foi utilizada como restrição na indicação de áreas prioritárias. Para cada táxon foi estabelecido um modelo ecológico de nicho, BIOCLIM, para predizer a potencial distribuição espacial. O algoritmo Simulated Annealing foi utilizado para estabelecer redes mínimas de áreas prioritárias para conservação e padrões espaciais de insubstituibilidade na Serra da Jiboia. A potencial distribuição espacial de cada táxon foi utilizada como alvo de conservação, com o objetivo de ao menos uma unidade amostral para cada táxon, e o modelo de uso e ocupação do solo como restrição. Todas as categorias, em conjunto, indicaram que a região centro-sul da Serra da Jiboia é a mais importante para a conservação, evidenciando que essa região deve ser conservada em níveis mais altos de restrição de uso.

Palavras chave: Complementaridade, Modelos ecológicos de nicho, Priorização espacial.


Texto completo:

PDF

Referências


Andelman, S., Ball, I., Davis, F. & Stoms, D. (1999). Sites v. 1.0, an analytical toolbox fordesigning ecoregional conservation portfolios. Santa Barbara: University of California. http://www.biogeog.ucsb.edu/biblio?page=7.

Bharathi, S. & Prasad, A. G. D. (2017). Diversity, population structure and regeneration status of arboreal species in the four sacred groves of Kushalnagar, Karnataka. Journal of Forestry Research, (28), 357-370.

Blengini, I. A. D., Cintra, M. A. M. U., Cunha, R. P. P. & Caiafa, A. N. (2015). Proposta de unidade de conservação da Serra da Jiboia (227p). Recuperado de http://www.gamba.org.br/wp-content/uploads/2016/03/Proposta-Final.pdf.

Booth, T., Henry, A. N., John, R. B., & Hutchinson, M. (2014). Bioclim: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Diversity and Distributions, (20), 1-9.

Cabeza, M., & Moilanen A. (2001). Design of reserve networks and the persistence of biodiversity. Trends in Ecology & Evolution, (16), 242-248.

Caiafa, A. N. (2015). A vegetação da Serra da Jiboia. In: Proposta de unidade de conservação da Serra da Jiboia (pp.72-83). Recuperado de http://www.gamba.org.br/wp-content/uploads/2016/03/Proposta-Final.pdf.

Campanili, M., & Schaffer, W. B. (Orgs.) (2010). Mata Atlântica, Patrimônio Nacional dos Brasileiros. Brasília, DF: Ministério do Meio Ambiente. Secretaria de Biodiversidades e Florestas, Núcleo Mata Atlântica e Pampa.

Carvalho-Sobrinho, J. G., & Queiroz, L. P. (2005). Composição florística de um fragmento de Mata Atlântica na Serra da Jiboia, Santa Terezinha, Bahia. Sitientibus: Série Ciências Biológicas, (5), 20-28.

Dobrovolski, R., Loyola, R. D., Guilhaumon, F., Gouveia, S. F., & Diniz-Filho, J. A. F. (2013). Global agricultural expansion and carnivore conservation biogeography. Biological Conservation, 165, 162-170.

Faith, D. P., Carter, G., Cassis, G., Ferrier, S., & Wilkie, L. (2003). Complementarity, biodiversity viability analysis, and policy-based algorithms for conservation. Environmental Science & Policy, 6, 311-328.

Gaston, K. J. (2004). Macroecology and people. Basic and Applied Ecology, 5 (4), 303-307. Recuperado de https://www.sciencedirect.com/journal/basic-and-applied-ecology/vol/5/issue/4.

Grenyer, R., et al., (2006). Global distribution of rare and threatened vertebrates. Nature, (444), 93-96. Recuperado de https://www.nature.com/articles/nature05237.

Hijmans, R. J., et. al., (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25 (15), 1965-1978. doi: 10.1002/joc.1276

Lemes, P., Melo, A. S., & Loyola, R. D. (2016) Climate change threatens protected areas of the Atlantic Forest. Biodiversity and Conservation, 23 (2), 357-368. dói: 10.1007/s10531-013-0605-2.

Main, M. B., Roka, F. M., & Noss, R. S. (1999). Evaluating costs of conservation. Conservation Biology, (13), 1262-1272. doi: 10.1046/j.1523-1739.1999.98006.x

Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. Nature, (405), 243-253. doi:10.1038/35012251.

Margules, C. R., & Nicholls, A. O. (1988). Selecting Networks of Reseves to Maximise Biological Diversity. Biological Conservation, 43 (1), 63-76. Recuperado de https://www.sciencedirect.com/science/journal/00063207/43/1.

Moore, J. L., et. al., (2003). Heuristic and optimal solutions for set-covering problems in conservation biology. Ecography, 26 (5), 595-601. doi: 10.1034/j.1600-0587.2003.03467.x.

Myers, N., et. al., (2000). Biodiversity hotspots for conservation priorities. Nature, 403 (6772), 853-858. doi: 10.1038/35002501.

Oliveira, G., Barreto, B. S., Pinto, M. P., Diniz-Filho, J. A. F., & Blamires, D. (2007). Padrões espaciais de diversidade da Família Emberizidae (Aves: Passeriformes) e seleção de áreas prioritárias para conservação no Cerrado. Lundiana, 8 (2), 97-106.

Oliveira, G., Diniz-Filho J. A. F., Bini, L. M. ,& Rangel, T. F. L. V. B. (2009). Conservation biogeography of mammals in the Cerrado biome under the unified theory of macroecology. Acta Oecologica, (35), 630-638.

Oliveira, G., & Diniz-Filho J. A. F. (2010). Spatial patterns of terrestrial vertebrates richness in Brazilian semiarid, Northeastern Brazil: Selecting hypotheses and revealing constraints. Journal of Arid Environments, 74 (11), 1418-1426.

Oliveira, G., Lima-Ribeiro, M. S., Terribile, L. C., Dobrovolski, R.,Telles, M. P. C., & Diniz-Filho, J. A. F. (2015). Conservation biogeography of the Cerrado’s wild edible plants under climate change: Linking biotic stability with agricultural expansion. American Journal of Botany, 102 (6), 870-877. doi: 10.3732/ajb.1400352

Oliveira, G. (2017). Human occupation explains species invasion better than biotic stability: evaluating Artocarpus heterophyllus Lam. (Moraceae; jackfruit) invasion in the Neotropics. Journal of Plant Ecology. Recuperado de https://doi.org/10.1093/jpe/rtx017.

Possingham, H., Ball, I., & Andelman, S. (2000). Mathematical Methods for Identifying Representative Reserve Networks. In: Ferson, S., & Burgman, M. (Eds.). Quantitative methods for conservation biology (pp 291-305). New York: Springer-Verlag.

Pressey, R. L. & Cowling. R. M. (2001). Reserve selection algorithms and the real world. Conservation Biology, 15 (1), 275-277. doi: 10.1111/j.1523-1739.2001.99541.x

Pressey, R. L., Johnson, I. R., & Wilson, P. D. (1994). Shades of irreplaceability: towards a measure of the contribution of sites to a reserve goal. Biodiversity Conservation, 3 (3), 242-262. Recuperado de https://link.springer.com/article/10.1007/BF00055941.

Pressey, R. L., Possingham, H. P., & Margules, C. R. (1996) Optimality in reserve selection algorithms: when does it matter and how much? Biological Conservation, 76 (3), 259-267. doi 10.1016/0006-3207(95)00120-4.

Pressey, R. L., Possingham, H. P., & Day, J. R. (1997). Effectiveness of alternative heuristic algorithms for identifying indicative minimum requirements for conservation reserves. Biological Conservation, 80 (2), 207-219. doi:10.1016/S0006-3207(96)00045-6.

Ribeiro, M. C., et al., (2009). The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, (142), 1141-1153. doi:10.1016/j.biocon.2009.02.021.

Silva, J. M. C., Sousa, M. C., & Castelletti, C. H. M. (2004). Areas of endemism for passerine birds in the Atlantic Forest. Global Ecology and Biogeography, 13, 85-92.

Fundação SOS Mata Atlântica (2017). Atlas dos remanescentes florestais da Mata Atlântica – Período 2015-2016 (Relatório técnico). São Paulo: Fundação SOS Mata Atlântica, INPE.

Tabarelli, M., et al., (2005). Desafios e oportunidades para a conservação da biodiversidade na Mata Atlântica brasileira. Megadiversidade, 1 (1), 132-138.

Terribile, L.C., et al., (2012). Areas of climate stability in the Brazilian Cerrado: disentangling uncertainties through time. Natureza & Conservação, 10 (2), 152-159. doi: 10.4322/natcon.2012.025.

Williams, P., Faith, D., Manne, L., Sechrest, W. & Preston, C. (2006). Complementarity analysis: Mapping the performance of surrogates for biodiversity. Biological Conservation, (128), 253-264. doi:10.1016/j.biocon.2005.09.047.


Apontamentos

  • Não há apontamentos.


Magistra

ISSN 2236-4420 - versão on line