Imobilização celular da levedura termotolerante Pichia kudriavzevii SD5 em alginato de cálcio para descoloração do azo corante Vermelho Congo

Camila Parente da Silva Alem Marinho, Marcia Luciana Cazetta, Talita Lopes Honorato

Resumo


Resumo: Este trabalho teve como objetivo utilizar a técnica de imobilização celular (IC) da levedura Pichia kudriavzevii SD5 em alginato de cálcio para descoloração do azo-corante Vermelho Congo. Para isso, foram produzidos imobilizados (pellets) com três concentrações de alginato (3, 4 e 5%). Após a imobilização celular, a taxa de descoloração foi estudada por meio de fermentação submersa contendo Meio Normal de Descoloração (MND) com Vermelho Congo a 200 ppm e inoculado com os pellets contendo a levedura imobilizada, agitação de 150 rpm, durante 48 horas a 43 ºC. Os melhores resultados foram obtidos com os pellets de alginato de cálcio a 4%, atingindo uma taxa de descoloração de cerca de 90%. A estabilidade dos pellets foi testada em ciclos sucessivos de reutilização e mantiveram a taxa de descoloração acima de 80% durante 23 dias, até seu rompimento no 24º dia. A imobilização das células de P. kudriavzevii SD5 mostrou-se bastante promissora para aplicação em processos de degradação de corantes, não somente devido à elevada taxa de descoloração, mas também pela resiliência dos pellets, o que possibilitou sua reutilização por muitos ciclos de fermentação.

Palavras chave: Fungos, Biodegradação, Microencapsulação

 


Texto completo:

PDF

Referências


Bilal, M, & Asgher, M. (2015). Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase. BMC Biotechnology, 15 (111), 2-14.

Canilha, L., Carvalho, W., & Silva, S. S. (2006). Biocatalisadores imobilizados. Revista de Biotecnologia, Ciência e Desenvolvimento, 9 (36), 48-57.

Chander, M., Arora, D. S., & Bath, H. K. (2004). Biodecolourisation of some industrial dyes by white-rot fungi. Journal of Industrial Microbiology and Biotechnology, 31 (2) 94-97.

Couto, S. R., Rivera, I., Muñoz, M. R., & Sanromán, A. (2000). Ligninolytic enzyme production and the ability of decolourisation of Poly R-478 in packedbed bioreactors by Phanerochaete chrysosporium. Bioprocess and Biosystems Engineering, 23 (3), 287-293.

Couto, S.R. (2009). Dye removal by immobilised fungi. Biotecnology Advances, 27 (3), 227-235.

Covizzi, L. G., Giese, E. C., Gomes, E., Dekker, R. F. H., & Silva, R. (2007). Imobilização de células microbianas e suas aplicações biotecnológicas. Semina: Ciências Exatas e Tecnológicas, 28(2), 143-160.

Dayi, B., et al. (2018). Investigation of the ability of immobilized cells to different carriers in removal of selected dye and characterization of environmentally friendly laccase of Morchella esculenta. Dyes and Pigments, 151, 15-21.

Dias, J.C.T., Rezende, R.P., & Linardi, V.R. (2001). Effects of immobilization in Ba-alginate on nitrile-dependent oxygen uptake rates of Candida guilliermondii. Brazilian Journal of Microbiology, 32 (3), 221-224.

Duarte, J.C., et al. (2013). Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express, 3(1), 2-8.

Freeman, A. & Lilly, M. D. (1998). Effect of processing parameters on the feasibility and operational stability of immobilized viable microbial cells. Enzyme and Microbial Technology, 23 (5), 335-345.

Hameed, B.B., & Ismail, Z.Z. (2018). Decolorization,biodegradation and detoxification of reactive red azo dye usingnon-adapted immobilized mixed cells. Biochemical Engineering Journal, 137 (20, 71-77.

Kaushik, P., & Malik, A. (2009). Fungal dye decolourization: Recent advances and future potential. Environment International, 35 (1), 127-141.

Mahmoud, M.S., & Mohamed, S.A. (2017). Calcium alginate as an eco-friendly supporting material for Baker’s yeast strain in chromium bioremediation. Housing and Building National Research Center, 13 (3), 245-254.

Martins, S.C.S., Martins, C.M., Fiuzal, L.M.C.G, & Santarella, S.T. (2013). Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. African Journal of Biotechnology,12 (28), 4412-4418.

Martínez, D., et al. (2017). Scaling-up batch conditions for efficient sucrose hydrolysis catalyzed by an immobilized recombinant Pichia pastoris cells in a stirrer tank reactor. Eletronic Journal of Biotechnology, 25, 39-42.

Müller, J.M., Santos, R.L., & Brigido, R.V. (2011). Produção de alginato por microrganismos. Polímeros, 21 (4), 305-310.

Natarajan, E. & Ponnaiah, G.P. (2017). Optimization of process parameters for the decolorization of ReactiveBlue 235 dye by barium alginate immobilized iron nanoparticlessynthesized from aluminum industry waste. Environmental Nanotechnology, Monitoring & Management, 7, 73-88.

Prasad, K. K., Mohan, S.V., Bhaskar, Y. V., & Ramanaiah, P. N. (2005). Laccase production using Pleurotus ostreatus 1804 immobilized on PUF cubes in batch and packed bed reactors: influence of culture conditions. Journal of Clinical Microbiology, 43 (3), 301-307.

Quintella, C.M., Mata, A.M.T., & Lima, L.C.P. (2019). Overview of bioremediation with technology assessment and emphasis onfungal bioremediation of oil contaminated soils. Journal of Environment Management, 241, 156-166.

Ramalho, P. A., et al. (2004). Characterization of azo reduction activity in a novel ascomycete yeast strain. Applied and Environmental Microbiology, 70 (4), 2279-2288.

Seifan, M., Samani, A.K., Hewitt, S., & Rerenjian, A. (2017). The effect of cell immobilization by calcium alginate on bacterially induced calcium carbonate precipitation. Fermentation 3 (57), 2-10.

Sharma, B., Dangi, A.K., & Shukla, P. (2018). Contemporary enzyme based technologies for bioremediation: a review, Journal of environmental Management, 210,10-22.

Silva, A. J., et al. (2006). Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea. Anaerobe, 12 (2), 93-98.

Stepanov, N., & Efremenko, E. (2017). Immobilised cells of Pachysolen tannophilus yeast for ethanol production from crude glycerol. New Biotechnology, 34, 54-58.

Talha, M. A., et al. (2018). Bioremediation of Congo Red dye in immobilized batch and continuouspacked bed bioreactor by Brevibacillus parabrevis using coconut Shell bio-char, Bioresource Technology, 252, 37-43.

Tan, L. Li, H., Ning, S., & Xu, B. (2014). Aerobic decolorization and degradation of azo dyes by suspended growing cells and immobilized cells of a newly isolated yeast Magnusiomyces ingens LH-F1. Bioresource Technology, 158, 321-328.

Taskin, M., et al. (2016). Lipase production with free and immobilized cells of cold-adapted yeast Rhodotorula glutinis HL25. Biocatalysis and Agricultural Biotechnology, 8, 97-103.

Vikrant, K., et al. (2018). Recent advancements in bioremediation of dye: current status and challenges. Bioresource Technology, 253, 355-367.

Yu, Z., & Wen, X. (2005). Screening and identification of yeasts for decolorizing synthetic dyes in industrial wastewater. International Biodeterioration & Biodegradation, 56 (2), 109-114.


Apontamentos

  • Não há apontamentos.


Magistra

ISSN 2236-4420 - versão on line